

CENE 486C: STUDENT STEEL BRIDGE

Gregory Pierce James Dover Justin Chiquito Jessica Gonzalez

5/9/2023

1

STUDENT STEEL BRIDGE COMPETITION

- Purpose:
 - Design 24 ft. long, 1:10 scale bridge model
 - Fabricate the model
 - Assemble the bridge for competition
- Competiton held April 13th and 14th, 2023 in Reno, Nevada
- Client: Mark Lamer

Figure 1.0: Competition Day

BRIDGE DIMENSIONS

- Max height: 5 feet
- Max width: 5 feet
- Stringer template must slide across bridge length
- Maximum member size is 42"x6"x4"

Figure 3.0: Section A of Bridge Envelope

COMPETITION CONSTRAINTS

- Vertical Load Test
 - 100-pound pre-load at locations L1 and L2,
 - 1,300 pounds added to location L1, 1,000 pounds added to L2
 - 50-pound sway load at location S
- For the competition, N3 was chosen.

j)				
Ν	L1	L2	S	
1	4'-0"	7'-6"	7'-0"	
2	4'-6"	<mark>8'-6"</mark>	7'-0"	
3	7'-0"	13'-0"	10'-0"	
4	8'-6"	13'-6"	13'-0"	
5	10'-0"	15'-0"	10'-0"	
6	11'-6"	16'-0"	13'-0"	

Table 1.0: Determination of L1, L2, and S

Figure 6.0: Lateral Testing

COMPETITION SCORING

- Construction Economy
 - Construction Speed
- Structural Efficiency
 - Lightness
 - Stiffness
- Overall Performance
- Cost Estimation
- Aesthetics
 - If a given team is DQ'd for any reason, this is the only category where an award can be received

C_c = Construction time (minutes) x number of builders (persons) x 100,000 (\$/person-minute) + (Total time - Construction time) x 250,000 (\$/minute) + load test penalties (\$).

Figure 7.0: Construction Economy Equation

- C_s = [Measured weight (pounds)]^{1.85} x 45 (\$/pound^{1.85})
 - + (Total weight Measured weight) (pounds) x 2,500 (\$/pound)
 - + Aggregate deflection (inches) x 2,750,000 (\$/inch)
 - + Load test penalties (\$).

Figure 8.0: Structural Efficiency Equation

PRELIMINARY DESIGN

PRELIMINARY BRIDGE SELECTION

Table 2.0	: Bridge	Туре	Selection
-----------	----------	------	-----------

Bridge Type	Pros	Cons
Arch	Low deflectionPotentially lightestPotentially lower build times	Angles critical to performanceDifficult fabrication processHard to analyze
Truss	Low deflectionReasonable analysis	Potentially heavyComplex fabrication processLong assembly time
Beam	Easy analysisSimple fabrication processQuick assembly	HeavyLacking support at middle span

BRIDGE SELECTION

Table 3.0	Bridge	Туре	Decision	Matrix
-----------	--------	------	----------	--------

Bridge Type Selection				
<u>Criteria</u>	Beam	<u>Truss</u>	<u>Arch</u>	
Complexity (15%)	3	2	1	
Aesthetics (5%)	1	3	3	
Lightness (20%)	1	2	3	
Stiffness (25%)	1	3	3	
Fabrication (20%)	3	1	2	
Construction (15%)	3	1	2	
Total	2.0	2.0	2.4	

*Criteria is evaluated on a scale from 1 to 3, 1 being not ideal and 3 being ideal

STRUCTURAL ANALYSIS

- RISA 3D to analyze each of the given six load cases
- Vertical Deflection
- Lateral Deflection
- Overall stresses
- Shear and moment values used for connection design

Figure 13.0: RISA Load Case 3 Deflection (8x exaggeration)

ANALYSIS METHODOLOGY

- Load Factor Resistance Design (LRFD)
 - Reduce member strength, increase load demand
- Flexure (M)
- Shear (V)
- Axial (P)
 - Tension/Compression
- RISA Code Check
 - Ensure capacity is greater than demand

Figure 16.0: Structural Model

AISC 15th (360-16): LRFD Code Check

Limit State	Required	Available	Unity Check	Result
Applied Loading - Bending/Axial				
Applied Loading - Shear + Torsion	-	-	-	-
Axial Tension Analysis	0.000 lb	17728.201 lb	-	-
Axial Compression Analysis	1899.829 lb	10174.394 lb		-
Flexural Analysis	21.898 lb-ft	557.55 lb-ft	-	-
Shear Analysis	740.564 lb	5318.46 lb	0.139	Pass
Bending & Axial Interaction Check (UC Bending Max)		-	0.187	Pass
Torsional Analysis	0.000 lb-ft	522.188 lb-ft	0.000	Pass

Figure 17.0: RISA 3D Code Check

FINAL DESIGN

- Through-Arch Bridge
- Truss to Transfer Load to Arch
- Vertical Braces on Stringers
 - Used to Distribute stress among top and bottom chord of stringer
- Horizontal Braces on Arch and Stringers
 - Reduction of Horizontal Sway

Figure 19.0: Side View

FINAL DESIGN - CONNECTIONS

Figure 20.0: Footings (8)

Figure 23.0: Elbows (9)

Figure 24.0: Braces (5, 6)

Figure 21.0: Stringers (3)

CONNECTION ANALYSIS

AISC Steel Manual

- Tensile and shear strength for bolts
- Bearing strength at bolt holes
- Tensile strength of plates

	SAE GRADE 8		
NOMINAL DIA OF PRODUCTS AND THREADS PERINCH	PROOF LOAD, LB.	TENSILE STRENGTH MIN, LB.	
1/4 - 20	3,800	4,750	
5/16 - 18	6,300	7,850	
3/8 - 16	9,300	11,600	
7/16 - 14	12,800	15,900	
1/2 - 13	17,000	21,300	
9/16 - 12	21,800	27,300	
5/8 - 11	27,100	33,900	
3/4 - 10	40,100	50,100	
7/8 - 9	55,400	69,300	
1 - 8	72,700	90,900	
1-1/8 - 7	91,600	114,400	
1-1/4 - 7	116,300	145,400	
1-3/8 - 6	138,600	173,200	
1-1/2 - 6	168,600	210,800	

Figure 26.0: Bolt Side View

FABRICATION

Figure 27.0: Footing blueprint

Figure 28.0: Notched Pipe

Figure 29.0: Welding Sample

FABRICATION - COMPLETED

Figure 30.0: Completed Stringers

Figure 31.0: Completed Fabrication

FABRICATION CHALLENGES

- 1.25" and 1" pipe
 - Discrepancy between expected and delivered pipe dimensions
 - Correct angles difficult to produce
- Arch exceeded height envelope by 8"
 - Required modification to achieve height under maximum 60"
- Hand fitting required to achieve acceptable dimensions and usable connections
 - Parts not interchangeable, which would have been the "ideal"

Figure 32.0: Design Arch

DESIGN AS BUILT

Design Changes:

- Replaced several elbow joints with straight connections at several points
- Two arch-cross-braces instead of 4

RISA Modeling:

- Predicted vertical deflection of 0.974"
- Lateral sway of 0.253"

Figure 34.0: As-Built Elevation View

CONFERENCE - DISPLAY

- Fabrication was completed prior to display time
- Bridge was prepped and labeled for construction
 - Colored stickers and numbers for aiding construction speed and efficiency
- Here is where bridges were judged for the Aesthetics category

Figure 35.0: Final Design in Display

CONFERENCE - COMPETITION

Figure 36.0: Applying Load to Bridge

- Construction time
 - <45 mins
- Lateral loading test:
 - 50 lbs. at 10 ft.
 - Deflection of less than a 1/10th of an inch
 - Pass
- Vertical loading test:
 - 1,400 lbs. at 7 ft. and 1,100 lbs. at 13 ft.
 - Disqualified for exceeding 1 in. of sway when L1 carried 1,400 lbs. and L2 carried 500 lbs.

COMPETITION RESULTS

 Results
 Deflection (in)
 Build Time (min:sec)
 Weight (lbs.)
 Aesthetics (1-10)

 Anticipated:
 0.95
 20:00
 500.0
 9.995 +/- 0.005

 Actual:
 1.65
 43:19
 511.3
 8.5

Table 4.0: Competition Results

Table 5.0: Competition Results (Aesthetics)

Rank	Full Name	Score
1	Northern Arizona University	12.83
2	Utah Valley University	12.17
3	Boise State University	12.00

IMPACTS AND TAKEAWAYS

- Social
 - Connected Arizona fabricators with local students for a regional competition, creating a sense of pride for those involved
- Environmental
 - Utilized recycled steel parts to reduce overall waste
 - Recycling finished product to also reduce overall waste
- Economic
 - Utilized steel distributor and donations to reduce overall cost

- Takeaways
 - Exposure to structural steel design and fabrication
 - Usage of structural analysis programs
 - Coordination with various groups and sponsors for material and labor

ANY QUESTIONS? THANK YOU!

FOOTINGS

ARCH ELBOWS

STRINGER - BRACES

STRINGER

